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Abstract

Li metal is regarded as a promising anode for Li batteries owing to its high specific

capacity. However, rapid dendrite growth and low reversibility hinder its practical

applications. Building an artificial solid electrolyte interphase (ASEI), which can

replace the brittle and inhomogeneous native SEI generated by parasitic reactions

between Li and liquid electrolyte, is an effective strategy to stabilize a Li metal

anode. In this work, we design and synthesize a multifunctional (mechanically

strong, Li+ ion conductive, electrolyte-blocking, and solution processable) ASEI

material, LiAl-FBD, for improving Li metal battery performance. The LiAl-FBD

crystal structure demonstrates that Al3+ ions are bridged by FBD2− ligands to

form anion clusters while Li+ ions are loosely bound at the periphery, enabling a

Li+ ion conductivity of 9.4 × 10−6 S cm−1. The short yet highly fluorinated ligand

chains endow LiAl-FBD with hardness and electrolyte-phobicity. The ASEI was

found to effectively prevent Li/electrolyte side reactions and extends the cycle life

of Li metal electrodes. Ultimately, by pairing LiAl-FBD coated 50µm-thick Li with

industrial 3.5 mAh cm−2, NMC811 cathode, and 2.8 µL mAh−1 lean electrolyte,

the Li metal full cells show superior cycle life than bare ones, achieving 250 cycles

at 1 mA cm−2.
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Chapter 1

Introduction

Lithium metal anodes are regarded as some of the most promising negative elec-

trodes in the next generation of batteries [1, 2]. Unfortunately, lithium metal

anode’s poor cyclability has so far prevented its use in energy storage devices.

The issue originates mainly from the unstoppable parasitic reactions between the

highly-reactive Li and the electrolyte components, eventually resulting in a poorly-

passivating layer called solid-electrolyte-interphase [3, 4].

To address the issues affecting Li metal anodes, artificial SEIs have recently gained

attention as an alternative approach, given their potential compatibility with com-

mercial electrolytes [5] and practical manufacturing processes [6]. Researching a

novel solution-based processing for ASEIs on the Li metal anode is tremendously

important, as it would allow effective ASEIs implementation in the most common

industrial coating methods such like spray coating, gravure printing and slot-die

coating.

In this work, we design and synthesize a solution-processable, mechanically strong,

Li-ion conductive, and electrolyte-blocking ASEI. The artificial SEI is based on a
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Figure 1.1: Conceptual sketch of polymeric Al-FBD network. Blue spheres, Li+ ions;
orange spheres, Al atoms; tetrahedra, anion centers; gray chains, soft ligands.

dynamic polymeric network with high Li+ single-ion conductivity, whose active

centers are tetrahedral Al (OR)−
4 (R = soft fluorinated linker) anions which also

act as counter anions to Li+ ions (Fig. 1.1). With this novel artificial SEI, we

demonstrate over 300 stable stripping and plating cycles in Li | Cu cell using

commercial carbonate-based electrolyte. Over 90 percent capacity retention for

almost 200 cycles in the Li | NMC full battery was achieved using directly-coated

thin Li foils and commercial, industry-standard NMC cathode sheets. The design

concept of using dynamic single-ion conductor as a stable and scalable artificial

SEI is surely promising for practical Li metal batteries.



Chapter 2

Theoretical Background

In recent years, demand for high-density energy storage devices has reached an all-

time high [7]. While playing an increasingly significant role in the energy scenario,

Li-ion batteries are approaching their theoretical limit [7]. It is therefore essential

to develop a new generation of batteries that can meet the increasingly demand-

ing requirements of modern electronic devices such as computers, cell phones and

electric cars [8, 9].

Possessing the highest theoretical specific power (3, 860 mAh g−1) and the lowest

electrochemical potential (3.04 V, compared to the standard hydrogen electrode)

of any other known negative electrode material, Li metal indeed has the potential

to deliver the highest specific energy should it be used as an anode in Li batteries

[8, 9].

Despite its great potential, a number of important drawbacks prevent Li metal

from being industrially implemented as an anode in Li batteries.

Firstly, Li readily reacts with conventional/commercial carbonate electrolytes to

form a so-called solid-electrolyte interface [3, 4], whose typically heterogeneous

3
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nature causes local fluctuations of Li+ ion flux and current density. The native

SEI fails to passivate the Li surface during cycling, thus leading to the creation

of dendrites [10]. Secondly, large volume change during Li stripping and plating

generates cracks in the mechanically brittle SEI, forms dead Li, and causes further

electrolyte consumption [10]. The combined action of the aforementioned effects

decreases the Coulombic Efficiency (CE) and compromises the long-term cycle life

of Li metal anodes [8].

Several strategies have been proposed to counteract said degradation pathways, in-

cluding additives and liquid electrolyte engineering [11–14], solid-state electrolytes

[4, 15], chemical pretreatment of Li metal [16–18], Li metal hosts [19], or the em-

ployment of a shielding cation layer [20]. Nevertheless, obtaining a stable SEI on

Li metal is particularly complex [3, 8], thus making the design and fabrication of

artificial SEIs a particularly attractive alternative to replace native SEI on Li.

An ideal artificial SEI must possess several essential features. Initially, prior work

suggested advantages of having high-modulus coatings on Li [3, 4]; however, Liu

at al. observed that in order to achieve macroscopic uniform Li deposition, the

SEI needs to readily adapt to the large volume change during Li stripping and

plating [10]. This is only possible if the SEI possesses dynamics properties and

a certain degree of flowability. Secondly, the artificial SEI should guarantee fast

and uniform Li+ single-ion conductivity as to reduce "hot spots", stabilize the Li

metal anode and increase the critical Li deposit size [4, 21].

Lastly, harmful side reactions between lithium and coating or lithium and elec-

trolyte should be minimized; therefore, SEI itself needs to be chemically an elec-

trochemically inert as to mitigate electrolyte penetration in the coating [22].
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Nonetheless, only a few SEIs have been implemented that possess all major de-

sirable properties, such as flowability [23], dynamic properties [10], or high ion

conductivity [17, 21]. In addition, most of the reported Li metal artificial SEIs,

mainly compatible with ether-based electrolytes only, cannot be utilized in current

Li-ion batteries due to their incompatibility with commercially used high-voltage

and high-energy density lithium nickel manganese copper oxide (NMC) cathodes.

It is thus necessary to carefully engineer future artificial SEIs and extend their

compatibility to a much broader electrolyte selection.

Despite being challenging, both scientifically and practically, to synergistically

incorporate all the ideal properties into one material, it is worth developing a

multifunctional ASEI for better protecting Li metal anodes.



Chapter 3

Results and Discussion

3.1 Material Design

Previous work demonstrated the validity of tetrahedral Al (OR)−
4 anions when ap-

plied in dynamic polymeric networks for artificial SEIs [24]; therefore, tetrahedral

Al (OR)−
4 anions were chosen as dynamic crosslinking centers in our current poly-

meric architecture. The Li+ counter ions are introduced as the mobile ions in the

network, while relatively soft fluorinated chains (2,2,3,3-tetrafluoro-1,4-butanediol,

FBD) are chosen as inert ligands (Fig. 3.1a). Being less chemically reactive and

more solvent resistant compared to their non-fluorinated version, 1,4-butanediol

(BDO) [24], the FBD chains can potentially mitigate side reactions between Li and

the dynamic polymeric network, prevent the dissolution of the network in polar

carbonate electrolytes, reduce electrolyte penetration through the ASEI, and guar-

antee flowability when combined with dynamic Al (OR)−
4 crosslinking sites. Most

important, Li+ ions, which are directly introduced during the polymeric structure

synthesis, can transport through the network of fixed Al (OR)−
4 anions, thus mak-

ing the ASEI a solid-state single-ion conductor [5].
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